Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Complexity ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2286564

ABSTRACT

Population demography can change the network structure, which further plays an important role in the spreading of infectious disease. In this paper, we study the epidemic dynamics in temporal clustered networks where the local-world structure and clustering are incorporated into the attachment mechanism of new nodes. It is found that increasing the local-world size of new nodes has little influence on the clustering coefficient but increases the degree heterogeneity of networks. Besides, when the network evolves faster, increasing the local-world size of new nodes leads to a faster initial growth rate and a larger steady density of infectious nodes, while it has small impacts on the steady density of infectious disease when the network evolves slowly. Furthermore, if the average degree is fixed, increasing the probability of triad formation p enlarges the clustering coefficient of a network, which reduces the initial growth rate and steady density of infectious nodes in the network. This work could provide a theoretical foundation for the control of infectious disease.

2.
Bull Math Biol ; 84(4): 47, 2022 02 26.
Article in English | MEDLINE | ID: covidwho-1712322

ABSTRACT

In order to understand how Wuhan curbed the COVID-19 outbreak in 2020, we build a network transmission model of 123 dimensions incorporating the impact of quarantine and medical resources as well as household transmission. Using our new model, the final infection size of Wuhan is predicted to be 50,662 (95%CI: 46,234, 55,493), and the epidemic would last until April 25 (95%CI: April 23, April 29), which are consistent with the actual situation. It is shown that quarantining close contacts greatly reduces the final size and shorten the epidemic duration. The opening of Fangcang shelter hospitals reduces the final size by about 17,000. Had the number of hospital beds been sufficient when the lockdown started, the number of deaths would have been reduced by at least 54.26%. We also investigate the distribution of infectious individuals in unquarantined households of different sizes. The high-risk households are those with size from two to four before the peak time, while the households with only one member have the highest risk after the peak time. Our findings provide a reference for the prevention, mitigation and control of COVID-19 in other cities of the world.


Subject(s)
COVID-19 , Epidemiological Models , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cities , Communicable Disease Control , Humans , SARS-CoV-2
3.
Infect Dis Model ; 6: 643-663, 2021.
Article in English | MEDLINE | ID: covidwho-1174266

ABSTRACT

Nonpharmaceutical interventions (NPIs), particularly contact tracing isolation and household quarantine, play a vital role in effectively bringing the Coronavirus Disease 2019 (COVID-19) under control in China. The pairwise model, has an inherent advantage in characterizing those two NPIs than the classical well-mixed models. Therefore, in this paper, we devised a pairwise epidemic model with NPIs to analyze COVID-19 outbreak in China by using confirmed cases during February 3rd-22nd, 2020. By explicitly incorporating contact tracing isolation and family clusters caused by household quarantine, our model provided a good fit to the trajectory of COVID-19 infections. We calculated the reproduction number R = 1.345 (95% CI: 1.230 - 1.460) for Hubei province and R = 1.217 (95% CI: 1.207 - 1.227) for China (except Hubei). We also estimated the peak time of infections, the epidemic duration and the final size, which are basically consistent with real observation. We indicated by simulation that the traced high-risk contacts from incubated to susceptible decrease under NPIs, regardless of infected cases. The sensitivity analysis showed that reducing the exposure of the susceptible and increasing the clustering coefficient bolster COVID-19 control. With the enforcement of household quarantine, the reproduction number R and the epidemic prevalence declined effectively. Furthermore, we obtained the resumption time of work and production in China (except Hubei) on 10th March and in Hubei at the end of April 2020, respectively, which is broadly in line with the actual time. Our results may provide some potential lessons from China on the control of COVID-19 for other parts of the world.

SELECTION OF CITATIONS
SEARCH DETAIL